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Abstract. This contribution presents the design and implementation of
a pipeline for producing scientifically accurate visualisations of Big Data.
As a case study, we address the data archive produced by the European
Space Agency’s (ESA) Gaia mission. The satellite was launched in Dec
19 2013 and is repeatedly monitoring almost two billion (2000 million)
astronomical sources during five years. By the end of the mission, Gaia
will have produced a data archive of almost a Petabyte.
Producing visually intelligible representations of such large quantities of
data meets several challenges. Situations such as cluttering, overplot-
ting and overabundance of features must be dealt with. This requires
careful choices of colourmaps, transparencies, glyph sizes and shapes,
overlays, data aggregation and feature selection or extraction. In addi-
tion, best practices in information visualisation are sought. These include
simplicity, avoidance of superfluous elements and the goal of producing
esthetical pleasing representations.
Another type of challenge comes from the large physical size of the
archive, which makes it unworkable (or even impossible) to transfer and
process the data in the user’s hardware. This requires systems that are
deployed at the archive infrastructure and non-brute force approaches.
Because the Gaia first data release will only happen in September 2016,
we present the results of visualising two related data sets: the Gaia Uni-
verse Model Snapshot (Gums), which is a simulation of Gaia-like data;
the Initial Gaia Source List (IGSL) which provides initial positions of
stars for the satellite’s data processing algorithms.
The pipeline here presented has been approved for producing official
deliverables of the ESA Gaia mission.
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1 Introduction

To the human brain, it is easier to understand visual representations of data
compared to the raw analysis of, for example, a table. Data visualisation provides
an intuitive means of exploring the content of data and allows to identify patterns



of interest that might not be noticed in other way, such as blind statistical
searches.

Scientific data collection has increased exponentially in the last years, and
alongside with it, the challenges of managing and visualising these datasets.

Exploring and visualising large datasets has become a major research challenge[1–
4]. Still, with the current knowledge and technologies it remains a challenge to
visualise big datasets. One easily becomes “data stunned” and problems such
as cluttering and overplotting are typical. Thus, it is crucial to follow careful
approaches for visually representing the information content of these datasets.

Making such large data-sets understandable is a current concern of the sci-
entific community and was the motivation for our work on developing a pipeline
capable of creating intelligible, visually appealing and scientifically correct visu-
alisations from large amounts of data using common hardware in an acceptable
time. These challenges are particularly true for Astronomy, for which the Gaia
mission is currently generating one of the largest and most complex data sets in
the field.

Gaia is an ESA cornerstone mission launched on December 19th, 2013. Its
main scientific goal is to understand the structure and development of our
Galaxy, the Milky Way. The originality of Gaia lies on its unprecedented ability
to determine stellar positions with an accuracy of a few millionths of a second
of arc: the thickness of a hair at 1000 km! The mission will produce an all-sky
survey of positions, distances, space motions, brightnesses and other astrophysi-
cal parameters of almost 2 billion objects brighter than magnitude 20[5, 6]. The
mission is projected to have a lifetime of 5 years, with almost three now elapsed.
By now, Gaia has already collected data from more than 1 billion of stars. By
the end of the mission it will have produced an archive of over a 1 Petabyte. Ac-
cording to current definitions[7], data sets with this volume and complexity are
considered big data. These are datasets which can not be managed and processed
with traditional techniques within an acceptable time.

This manuscript presents our pipeline as an approach for scientific visuali-
sation of big data, and its application to data produced from the Gaia mission
of the European Space Agency (ESA). With three main modules, it receives as
input tabular data, reads the data by chunks, process it, and builds a visual
representation of the input data. The pipeline allows to create a visualisation
for big data, with detail and quality, and because it does not load all data at
once, Random Access Memory (RAM) problems are avoided. This pipeline is
especially addressed to process coordinates, being useful not only to Astronomy,
but also to all fields working with coordinates systems.

2 Related Work

The demand to visualise big datasets has brought to light some big data visual-
isation systems, for a different range of data[8–11]. However, this tools are not
addressed to coordinates systems or Astronomy.



In astronomy, software such as Topcat[12], Aladdin[13] and Blender1 are par-
ticularly used for visualising smaller datasets with up to a few million points.
However, for billions of points, these tools can no longer handle the task. Par-
aview[14], is also used in some astronomical applications and is capable of han-
dling large data-sets. However, its power comes from using distributed computing
resources such that large data-sets will require large computer facilities.

One of the challenges in Astronomy, is to generate scientifically useful maps
of our galaxy, the Milky Way, from measurements in tabular form (e.g. stellar
coordinates and fluxes). The degrees of success in accomplishing this vary. In
any case these maps have been built mostly using small catalogues (by today’s
standards) of stars, using more or less advanced techniques.

Since the dawn of photography the most common method to represent the
Milky Way galaxy is through the assembly of photographic images. Barnard’s
Atlas of Selected Regions of the Milky Way[15], National Geographic Society
Palomar Observatory Sky Survey of the northern sky[16] or Sloan Digital Sky
Survey[17] are some of the examples of panoramic images of the Milky Way
created from photographs. More recently, Axel Mellinger describes the construc-
tion of a colour all-sky panorama image of the Milky Way from more than 3000
individual CCD images[18].

Researchers from the Bochum University in Germany have created what is
currently the photographic panorama of the Milky Way with the largest number
of pixels2.

However, there are many observables that cannot be captured directly as
single images. Velocity measurements, chemical composition, variability periods,
just to name a few of these, are rich in information and are usually stored in
catalogues. Thus, other views of the Milky Way can be obtained by encoding
these quantities in spatial maps.

By the year of 1955 in Lund Observatory, Martin and Tatjana Keskula hand-
painted a 2x1 meters map of the sky, with the 7000 brightest stars (Figure 1a).
All of this 7000 stars were visible to the naked eye and they were painted as
individual objects overlayed on a picture of the diffuse light of the Milky Way[19].

Before Gaia, ESA launched a precursor mission: Hipparcos, which was the
first space mission dedicated to charting the heavens, recording the positions
of stars in the sky and estimating their distances by exploring the parallax
effect. It was launched in 1989 and operated until 1993. Hipparcos produced a
catalogue containing the positions and distances of 118218 stars, and posteriorly
the Tycho2 catalogue listing positions and motions (not distances) of over 2.5
million stars3.

In 2002, using the information in Hipparcos and Tycho2 catalogues, a syn-
thetic image of a full-colour all-sky star map was constructed4. The main goal
of this map was to portray the sky as the dark-adapted naked eye perceives it.

1 https://www.blender.org/
2 http://aktuell.ruhr-uni-bochum.de/pm2015/pm00143.html.en
3 http://www.cosmos.esa.int/web/hipparcos
4 http://sci.esa.int/hipparcos/52887-the-hipparcos-all-sky map/



Image Reduction and Analysis Facility (IRAF) software was used to generate
the star map. A full-colour photography of the constellation of Orion was used as
benchmark. The final result was an image of the sky with a size of 20000×10000
pixels (Fig1b).

Fig. 1. a) hand-painted map of the Milky Way; b) synthetic full-colour all-sky star
map from Hipparcos data

The two cases given above illustrate the possibilities and limitations of tech-
nical approaches for producing maps of the Milky Way. The Lund map[19], was
based on 7000 stars and could be painted by hand. The Hipparcos map, with 2.5
million stars required a common computer and software used by astronomers.
This last approach does not scale to the Gaia products, due to the amount of
collected data (more than one billion of stars).

Here we present a first prototype of a pipeline for serious information vi-
sualisation, following best practices with include setting adequate colour-maps,
simplicity and avoidance of superfluous elements.

3 Data description

The basic type of data required by our pipeline as input are sets of coordinates,
a latitude and a longitude which mark the position of objects (for example, the
position of all cars, the position of all zoos, the position of all stars in the Milky
Way). We used the coordinates of stars in the Milky Way.

Gaia is a system of two telescopes with three instruments delivering different
kinds of data: The Astrometric Instrument delivers positions that are used for
computing transverse motions and distances; The Radial Velocity Spectrometer
delivers high resolution spectra that allow computing the velocity of stars along
the line-of-sight though doppler shift measurements; The Photometric Instru-
ment delivers low-resolution spectra in the red and blue range, which are used
for computing the apparent luminous fluxes (magnitudes), temperature, mass
and chemical composition of stars. Gaia detects astronomical sources on-board
and transmits only small rasters around each source to Ground stations. Process-



ing this telemetry into the final science-ready catalog and intermediate products
is then done by the Gaia Data Processing and Analysis Consortium (DPAC).

The data used in the pipeline here described consists of the science ready
catalog of stellar positions and physical parameters produced by the DPAC5.

Because the first Gaia data release will be in September 2016,to the develop-
ment of our pipeline, we used other data sources: Gaia Universe Model Snapshot
(GUMS) and the Initial Gaia Source List (IGSL). These are the standard test
data for DPAC development.

GUMS is a computational simulation of the objects and characteristics that
Gaia will potentially observe. It has approximately 2 billions simulated objects,
including longitude and latitude, magnitudes and other parameters[20].

IGSL is the starting point for object positioning in the Gaia data processing.
It was compiled from large scale public catalogs of stellar positions and a few
specific catalogs provided by the DPAC. It has over 1 billion entries, correspond-
ing to a file with approximately 250 Gigabytes, with most of parameters that
Gaia will publish[21].

4 Approach

In Astronomy, as in other sciences, Python has become a widely used program-
ming and analysis language. In the case of astronomy there are a huge number
of packages covering from basic astronomical functions such as coordinate trans-
formations to advanced modeling and statistical analysis.

The pipeline represented in Figure 2 has been designed with the Big Data
challenge in mind. The input data is tabular and contains at least a pair of
coordinates per source followed by the source’s attributes. Module 1 reads the
data by chunks of, for example, 104 lines at a time. Module 2 processes each
chunk and does the necessary computations (described below) for producing the
2D matrix of pixel positions and values that will be visualized. Finally, module
3 renders the visualization.

We now describe the pipeline in more detail. Since the pipeline will be openly
available and likely to be used at least within the Gaia community (now with
approximately 600 researchers), we have opted to also develop it in Python.

Module 1 reads the data in chunks for avoiding overloading by too many
data. This was done using pandas, an open source library which provides data
structures and data analysis tools for Python. Each chunk is passed to Module
2.

Module 2 processes the lines in each chunk, preparing the data for being
rendered into an image. In Astronomical data, coordinates can be represented in
different spherical systems. The most common systems are centered on the Sun
but have different orientations of their poles and equators. These include the
Equatorial system (equator of the Earth projected on the celestial sphere) the
Galactic system (equator aligned with the plane of the Milky Way) or Ecliptic

5 http://www.cosmos.esa.int/web/gaia/release



Fig. 2. Data processing pipeline for the astronomical case study. Astronomical tabular
data as input. Module 1: data reading by chunks. Module 2: process the data, per-
forming coordinates transformation, data binning, map projection application and a
pixel map generation. Module 3: uses Python image techniques to draw the pixels map
generated by Module 2. The output of this pipeline is a scientifically accurate image
of the input data.

(equator aligned with the plane of the solar system) systems. Users will often
require producing maps from any of these different perspectives. Catalogs will
usually only provide coordinates in one system. Thus, a first step is to perform
an optional transformation of coordinates.

The Gaia catalogue will list equatorial coordinates which produce a twisted
view of the plane of the Milky Way (see Figure 3). Thus we have applied a equa-
torial to galactic coordinate transformation (step 1 of module 2). Astronomical
coordinate transformations, such as the one applied are provided by the Python
Astropy package.

Astropy provides a large panoply of astronomy-related functionalities. It sup-
ports different file formats such as flexible image transport system (FITS) files,
Virtual Observatory (VO) tables, and ASCII table. It allows unit and physi-
cal quantity conversions, physical constants specific to astronomy, celestial co-
ordinate and time transformations, world coordinate system (WCS) support,
generalized containers for representing gridded as well as tabular data, and a
framework for modelling and statistical analysis[22].

Step 2 of module 2 does a partitioning of the coordinate space for aggregating
data and computing statistics to be visualized. The simplest case would be a 2D
source density map. While aggregating data in a cartesian space can be easily
done (among other possibilities) by dividing space into equal area squares (or
hyper-cubes for higher dimensions), dividing a sphere in equal area sections is



Fig. 3. Sample of GUMS dataset represented in a) equatorial coordinates; and b)
galactic coordinates.

not trivial. One way to accomplish this, popular in Astronomy, is to divide the
sphere using Hierarchical Equal Area isoLatitude Pixelation (HEALPix)[23].

HEALPix is a mathematical structure which supports a suitable discreti-
sation of functions on a sphere at sufficiently high resolution, and provides an
index for easy, fast and accurate statistical astrophysical analysis of massive
full-sky data sets. It has three major characteristics: the sphere is hierarchically
tessellated into curvilinear quadrilaterals, the area of each pixel at a given reso-
lution is identical, and pixels are distributed on lines of constant latitude. Using
HEALPix allows to our pipeline to distribute each star in the correct position
of a matrix, and likewise to produce correct statistical samples.

HEALPix software is available in several programming languages such as C,
C++, Fortran, JAVA and Python. We used Healpy, the python package for ma-
nipulating healpix maps. Healpy allows to chose the number of healpixels (nside)
in which the coordinates will be distributed. This number has to be a power of
2, limited to a maximum of 223. A nside of x creates 12 ∗ (x2) healpixels. Thus,
through healpy, the galactic coordinates are transformed into healpixels num-
bers, i.e., each pair longitude-latitude is replaced by a number representing the
correspondent healpixel for that coordinate, for a given nside. A reverse trans-
formation from healpixs to angular coordinates gives the central coordinates of
each healpix with correctly computed statistics associated to those coordinates.

The third step in module 2 is to project on a flat cartesian plane the map pre-
viously computed on a spherical representation. A sphere can not be represented
on a plane without distortion[24], thus, one must analyze the trade-offs between
different coordinate projection schemes. The Hammer projection, adopted in
this work, is known for being an equal-area projection that reduces distortions
towards the edges of the map. The projection results in x,y positions in a 2:1
ratio with x confined to (-1,1).

The last step of module 2 is to scale the x,y coordinates to a matrix with a
given range and pixel size, and assign each x,y pair to a pixel. The size of our
matrix is the desired size of our image. The number stored in each position of
the matrix correspond to the statistics of stars agglomerated in that position.

The third module of this pipeline uses the matrix created by module 2 for
rendering the final image. The Python Imaging Library (PIL)[25] was used.
It provides modules that can perform many image manipulation and processing



operations in Python and draws images pixel by pixel. Gizeh, a library for vector
graphics based on PyCairo, was also used for drawing shapes, such as circle with
transparencies for representing brighter and closer stars.

The images presented in this work follow from the initial tests of the pipeline
and represent the number density of sources within each Healpix. Other images
are being developed, such as maps of integrated stellar fluxes as well as kinematic
and chemical maps of the Milky Way.

For the density, several colour schemes have been tested (see Figure 4). We
find that in general, grayscale maps provide the best representations, consis-
tent with photographic plates and free of misleading artifacts that rainbow like
colourmaps are known to produce [26]. White was attributed to the pixels with
highest densities, and back to the pixels with lowest densities.

Fig. 4. GUMS data with different colormaps, from matplotlib python library. Left top
- rainbow; Right top - Accent; Left bottom - Blues r; Right bottom - Greys r.

5 Results

The main goal of this work was to create a realistic map of the Milky Way,
with Gaia data, inspired by the Hipparcos map (Figure 1a). However, unlike
Hipparcos, with considerably less stars (approximately 118000), the Gaia catalog
will list almost 2 billion stars. As explained in Section 3, here we test the pipeline
using the GUMS and IGSL datasets. Our pipeline is now able to process one
coordinate in approximately 1.5 × 10−5 seconds.

Figure 5a represents approximately 2 billion of stars from Gaia Universe
Model Snapshot (GUMS) simulation, processed by our pipeline. It is a density
map of the Milky Way, in galactic coordinates, with a size of 6000× 2000 pixels,
with the densities computed in HEALPix, and displayed in a Hammer projec-
tion. The whitest zones correspond to the larger densities and the darkest zones
to lower densities. This colour map clearly displays the known features of the
simulated Milky Way such as the higher concentration in the center and the



Fig. 5. GUMS dataset visualisations created by a) our pipeline; and b) another visu-
alisation system.

darker band in the galactic equator representing the effects of light absorption
by interstellar matter.

Comparing our image (Figure 5a) with another visualization of the same data
(Figure 5b)6[20], the first one, resembles a realistic photograph of Milky Way,
instead figure 5b, although informative, in not realistic and introduces the false
impression of a delimited high density region coded in red.

The second dataset used for tests was the Initial Gaia Source List (IGSL) and
is based on real sky measurements. The result is shown in Figure 6a. This image
has the same technical characteristics of Figure 5a (density map, resolution, gray
scale colourmap). Here, other structures can be identified such as the Magellanic
Clouds (Figure 6b, left) and small clusters of stars (Figure 6b, right). Figure 6c
shows an alternative visualization of the same data7[21]. Both figures, 6a and 6c,
reveal the same circular patterns. These patterns are footprints of the ground
based imaging surveys from which the IGSL was built. Again, it is seen how
the choice of a colourmap can introduce the false impression of delimited high
density regions (coded in red). Figure 6a, as Figure 5a, transmits the feeling of
seeing the actually real night sky, this being one of the goals of this project: to
create an image informative, real, appealing to our sight.

6 http://gaia.esac.esa.int/tap-server/StatGraph?TABLE=public.g10 mw&TYPE=DENSITY
7 http://gaia.esac.esa.int/tap-server/StatGraph?TABLE=public.igsl source&TYPE=DENSITY



Fig. 6. IGSL dataset visualisations created by a) our pipeline; b) details of a), with
Magellanic Clouds on the left and stars agglomerations on the right ; and c) another
quick look visualisation system.

6 Conclusion

Along this paper we have discussed some challenges of big data visualization. Our
work contributed to the development of a new pipeline that we demonstrated
to be feasible for visualizing Big scientific Data. In the astronomical case study
we presented, the pipeline showed to be adequate for reading, processing and
visualizing in a scientifically accurate form, the massive amount of data produced
by Gaia mission.



The pipeline can already deal with great amounts of data (billions of points)
stored in hard drive with no need of bulk loading to RAM. However there are
issues to solve. For example, it takes almost five hours to read and process all
the data. We intend to reduce this value with threading and multiprocessing
methods.

For the future we intend to create images using other parameters such as stel-
lar magnitude, colour, astrometric, kinematic and chemical indicators. Another
development, is to work on overrepresentation analysis to find which features
are discriminatory of a set of points (selected by the user) with respect to the
whole dataset. The goal is to help the user understand in real time the shared
semantics behind a given selection of points, for example by using a Bayesian
approach[27].
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