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BREAKING NEWS ON QUANTUM



QUANTUM BASICS

• How do we represent information?
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Measurement (not 
a quantum op. -
irreversible) that 

gives classical 
information 0 or 1 
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QUANTUM ENTANGLEMENT

Measurement 
result in Alice’s 

side
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QUANTUM ENTANGLEMENT

Entanglement is a set of particles for which we can not
write the states as a direct product of single classical
particles, (e.g. |00> + |11> != (a|0> + b|1>) Ä (c|0> + d|1>
for all a, b, c, d) – This does not exist in classical world.



QUANTUM VS CLASSICAL

Classical Quantum

Unity of 
information Bit, 0 or 1 Qubit, i.e, a linear combination of |0> and |1>

Copy Yes Only classical information

Entanglement
No, any two bit can 

exist separately with a 
meaning

Yes, there are 2 particles states for which we can not 
write the states as a direct product of single classical 

particles, (e.g. |00> + |11> != (a|0>+b|1>)
Ä(c|0>+d|1>, for all a, b, c, d) 

Evolution Logical gates (may be 
irreversible)

Quantum logic gates (unitary transformations that 
are always reversible)

Computational 
power Turing machines Turing machines

Non-local effects No Yes

Communication 
faster than light No No
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POWER OF QUANTUM - AN 
EXAMPLE

• Consider a function f:{0,1} à {0,1}. How many queries
do you need to know whether f is constant?

• Depends:
• Classically – 2
• Quantumly – 1

• Consider a function f:{0,1}n à {0,1} that is either constant
or balanced. How many queries do you need to know
whether f is constant or balanced?

• Classically – 2n-1 + 1
• Quantumly – 1



POWER OF QUANTUM - AN 
EXAMPLE– DEUTSCH ALGORITHM

• Consider a function f:{0,1} à {0,1}. Is f constant?

|a> = |0>|1> à |b> = ½ (|0> + |1>) (|0> - |1>)
à |c> = ½ (|0> (|0 Å f(0)> - |1 Å f(0)>) + |1> (|0 Å f(1)> - |1 Å f(1)>)

= ½ ((-1)f(0) |0> (|0> - |1>) + (-1)f(1) |1> (|0> - |1>)
= ½ (|0> + (-1)f(0)Åf(1) |1>)(|0> - |1>)

à |d> = ½ |0> (|0> - |1>) if f is constant or
|d> = ½ |1> (|0> - |1>) if f is balance

single query 
but answer in 
superposition
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WHAT BOOST CAN WE HAVE?

• Depends:
• If it is a promised problem, we can have an exponential boost 

when compared with best classical algorithms:
• Deutch-Jozsa, 
• Bernstein, 
• Shor, etc…

• In general (not proven yet), the boost is only polynomial: 
• Grover’s search algorithm -- quadratic speedup
• Recommendation systems algorithms (2018) – polynomial speedup.

• If P = BQP then BPP = BQP



QUANTUM ON THE “ZOO”

• BQP PP proved by
Adleman et al in 97
• Best result known:

BQP Í AWPP (almost
wide PP, NP machine
with negligible error)
proved in 98
• There exists an oracle

such that BQPO Ë
PHO Raz Tal 18



QUANTUM DEVICES 
AVAILABLE

• Truly random bit generator!

•Quantum Cryptography Platform 

•Quantum key generator

•Quantum computer – IBM Q  



HOW MANY QUBITS DO 
QUANTUM COMPUTER HANDLE?

• Mar/2018:
• Alibaba: 11 qubits cloud,
• Google: 72 qubits (but usable only 49 with good accuracy),

• Feb/2018:
• IBM: 50 qubits, 20 qubits cloud,
• Intel: 49 qubits,
• Google: 50 qubits, 
• D-Wave 2000 qubits (but their chips aren’t in the same category that

everyone else’s efforts, and their performance also leaves many
unanswered questions).

• In theory we can factor numbers up to 70 digits! (the record of 
largest factored number is 291311 – only 6 digits).



USES OF 
QUANTUM 
COMPUTATION
• Optimization 
• System simulation
• Machine learning
• Material simulation
• Computational 

Chemical/Microbiology
• Circuit, Software, and 

System Fault 
Simulation
• Code breaking
• Cryptography



CRYPTOGRAPHIC 
APPLICATIONS

• Why is quantum technologies needed in crypto?
• Speedup of computation and communication;
• Security does not depend on computational hardness assumptions

but relies on the principles of quantum mechanics;
• More communication efficient protocols (like BB84);
• BC cannot be theoretical information secure classically;
• BC, in principle, could be theoretical information secure in the

quantum realm;
• BC can be constructed from OT but the other way around requires

(perfectly secure) BC;

• Problems
• Cost of set up;
• Distance of quantum apparatus (up to near 100 km without

repeaters);
• Stability of quantum memories;



MAJOR RESULTS AND 
MILESTONES

•Quantum cryptography 

• Key exchange: Single photon sources (BB84, E91);
• Privacy: BC, OT, Weak coin flipping

• Post quantum cryptography (based on computational 
hard assumption, not of laws of physics) 

• McEliece – syndrome decoding problem
• NTRU, LWE – shortest vector problem and learning with errors
• Supersingular elliptic curves (isogenies) – hardness of finding 

the isogenies of an EC



OBLIVIOUS TRANSFER AND 
COMMITMENTS – WHY?

• They are really simple to understand;
• They are the basics of the basics, meaning that, from them we

can construct all the other SMC protocols (Yao);
• All privacy functionalities can be reduced to implementing

oblivious transfer (OT) (Kilian);
• Perfect bit commitment is possible under special relativity –

impossibility of faster than light speed communication. (Kent)
• Using classical crypto one can perform at around 360 OTb/s!
• So to cipher a text using AES which needs around 1000 k OTb,

would take around 50 minutes!
• To make more OT per second classically one has to reduce

OT security, but not necessarily in quantum!
• Shor’s can break Rabin’s OT.



OBLIVIOUS TRANSFER AND 
COMMITMENT EXPLAINED

•Oblivious transfer:

• Two agents Alice and Bob: Alice wants to share a secret with Bob
such that
• 1) Bob will receive it with probability ½;
• 2) Alice with not be able to know whether Bob got it or not;



OBLIVIOUS TRANSFER AND 
COMMITMENT EXPLAINED

•Oblivious transfer:

• Two agents Alice and Bob: Alice wants to share a secret with Bob
such that
• 1) Bob will receive it with probability ½;
• 2) Alice with not be able to know whether Bob got it or not;

• Bit Commitment

• Two agents Alice and Bob: They want to play coin tosses over the
telephone
• 1) Alice has to be binded to the value chosen (she cannot change it later)
• 2) Bob cannot distinguish a commitment to 0 from a commitment to 1

(concealing)



CLASSICAL APPROACH

• Oblivious transfer (Rabin’s)

Consider N = pq and e co prime
with Phi(N).

Alice computes me mod N and
sends N, me mod N and e to Bob

Bob pick x and sends x2 mod N to
Alice.

Alice replies with y such that y2 = x2.
If y != +/- x Bob recovers m by
factoring N.

• Bit commitment

Consider a one way function f (easy
to compute and hard to invert).
Examples: OWF based of factoring
or Sha256!

In the commitment phase Alice
computes f (xb) for a random string
x and her bit b;

In the opening she reveals x and b to 
Bob.

By the CRT 
happens with 
probability ½ 



BAD NEWS, THEN WHAT?

• No unconditionally secure (bit) Oblivious Transfer protocol
nor Bit Commitment protocols are possible – No-go
Theorems (Mayers, Lo and Chau 98)

•We can construct String Commitments and String
Oblivious transfer or impose (realistic) restrictions on the
adversaries for single bit versions:
• Relativistic effects;
• Noisy quantum memories;
• Bounded entanglement;
• Semi-quantum agents;
• Trusted third-parties;



A SIMPLE PROTOCOL FOR A 
PRACTICAL BC – THE FUNCTIONALITY 
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SKETCH OF THE PROOF

• Soundness:
Because the value of j is fixed during the setup phase,
when Alice sends c=bÅj, she fixes her commitment to b.
Measuring |ej

i> in the basis Bi is guaranteed to output j.
Therefore, Bob always obtains b by taking cÅj.



SKETCH OF THE PROOF

• Concealing:
Consider the following program for the converter sB. During
the setup phase, sB simulates FAQB to generate the values s,
C(s), \ell, j and the qubit |ej

i> then sends (\ell, |ej
i>) to the

adversary. In the commit phase, upon receiving commit
from FBC, it sends c’=j to the adversary.
During the open phase, after receiving (open, b) from FBC , if
b=0 it sends q=C(s)Å\ell to the adversary, otherwise q’ =
C(~s)Å\ell.
The concealing property comes by noting that the behavior
of sB is the same regardless of the bit that was sent to FAQB,
hence there is no algorithm PiB* that can guess the
committed bit with probability greater than ½.



SKETCH OF THE PROOF

• Binding
Consider the following program for the converter sA. During the setup
phase, sA simulates FAQB to generate the values s, C(s), \ell, j and the
qubit |ej

i>. It then sends (q=C(s)Å\ell, j) to the adversary. During the
commit phase, upon receiving a bit c' from the adversary, it computes
b=c' Å j and outputs (commit, b) to FBC. During the opening phase,
upon receiving q' from the adversary, if q'=q it outputs (open) to FBC.
Bob outputs error whenever q’ sent by Alice is such that q'Å\ell \notin
Im(C). From the soundness property we know that when q=q’ Bob
opens b=c'Åj. We are interested in the case when q' \neq q and
q'Å\ell \in Im(C). Because f(s) is injective and almost perfectly non-
linear, finding such q' given q is equivalent to finding s given C(s)Å\ell,
which the adversary can do only with negligible probability.



THE QUANTUM TIMELINE

• https://en.wikipedia.org/wiki/Timeline_of_quantum_comp
uting

https://en.wikipedia.org/wiki/Timeline_of_quantum_computing


CONCLUSIONS

•Quantum resources can in principle attain rates of OT
impossible to perform with classical crypto;
• Large scale privacy protocols, like private data mining can

arise from this scenario;
• Future work: use of continuous variables (and the

Heisenberg uncertainty principle) to obtain fast OT, other
crypto functionalities, authentication (using entanglement),
non-repudiation, verifiable secret sharing, e-voting.



SO, WHAT’S NEXT

• At this time we have on going on crypto:
• Practical implementation and realization of a semi-quantum protocol 

for QKD with classical Alice and Bob and a fully quantum server;
• Quantum key distribution with quantum walks;
• OT based on BC with collision resilient hash functions;
• Quantum contract signing with entangled pairs;
• BC based on monogamy of entanglement;
• Quantum resilient cryptosystems based on McEliece, Goppa codes 

and NTRU.
• Other things ongoing on quantum:
• Proof of Brudno’s theorem with QKC;
• New proposal based on QKC to “quantify” quantum correlations;
• Realizing quantum zero knowledge with an individual approach; 



LAST MINUTE

• Special talk: Quantum Internet

Speaker: Stephanie Wehner (QuTech, Delft University of 
Technology)
Date: Tuesday 14 May 2019
Time: 17:00
Venue: Sala 1, Fundação Calouste Gulbenkian, Lisbon


